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NOTATION

-
aP=0 he* O
N % / +
aP=0 he
= = 1 —
S -

Nozzle Block

' (Negative as Shown)

K k' he K’
AP . V. ) EAh
*z' W
e, e

Level of Liquid Surfoceot AP*0O



k"

AP

SYMBOLS

speed of sound in air (at = 1117 feet per second)

perimeter of flap or skirt (taken at lowest point) in feet

specific heat at constant pressure in Btu/pound-degree
Fahrenhelit

specific heat at constant volume in Btu/pound-degree
Fahrenheit

discharge coefficient

height of lowest point of flap or skirt to depressed liquid
surface in feet (h = k ~ k") = he + %E for report data only

amount of liquid surface depression in feet

height of lowest point of flap or skirt from free liquid
surface (when Ah = 0) in feet

jet momentum force in pounds

height of model base from depressed surface of liquid in
Ah

feet (k = k' + 5 for test)
concr ity of model (vertical distance of model base to free
su' . of liquid when Ah = 0) in feet

.cal distance of model base to lowest point of flap or
.arc in feet (k" = k' - he)

atmospheric pressure (P = 14.7 pounds per square inch)
base pressure in pounds per square foot

air supply reference pressure in pounds per square inch

rate of flow in cubic feet per second

distance from edge of flap to water surface at minimum
escape area (see Figure 15)

total planform area in square feet

intake area in square feet
escape area in square feet (Se = Ch)

average escape velocity of air at point where Se is measured,
in feet per second

average airspeed at intake of model in feet per second

average airspeed at flowmeter throat in feet per second

angle of inclination of flap or skirt in degrees (see notation)

density of air (p = 0.002378 slug per cubic foot)

density of water .
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SUMMARY
A two-dimensional plenum-chamber GEM with a trailing-edge flap was
tested over a liquid surface. The discharge coefficient was determined
for the following parameters: ratio of intake to escape area, ratio of
planform area to intake area, hover height, planform loading, flap angle,

and distance from the trailing edge of the flap to the liquid.

INTRODUCTION
The present investigation was performed to determine the effects
of intake area, planform loading, hover height, and flap (or skirt) angle
upon the discharge coefficient of a two-dimensional plenum~chamber GEM.
The tests were conducted intermittently in the Aerodynamics Laboratory
at the Taylor Model Basin during September and October, 1960, This in-

vestigation was carried out in accordance with Reference 1.

MODEL AND TEST EQUIPMENT
Tne test equipment consisted of a narrow rectangular tank with trans~
parent sides. One end was enclosed with wood; the other was open to allow

air to flow freely through a vertical nozzle. For simulation of flight



“D-

over a liquid surface, the open end required a barrier to retain the
water. A photograph of the test setup is shown in Figure 1.

The model used for representing the GEM consisted of a board with
a flap at one end and an inlet diffuser nozzle at the other end. The
flap setting could be varied over a wide range of angles, and the size
of the inlet was controlled by inserting different nozzle blocks. A
photograph of a typical nozzle is shown in Figure 2, Static pressure
orifices for determining pressures at the base of the model were located
along the length of the board,

CALIBRATION OF FLOWMETER

The calibration of the flowmeter was carried out by measuring the
jet force acting upon a modified chemical=-type balance, for various
values of air supply pressure Pu. A photograph of the flowmeter is shown
in Figure 3. The procedure for calibration was to discharge the air
through the flowmeter perpendicular to the balance plate. For values
of Pu from 10 to 90 psi, the force J on the balance was recorded. The
height of the nozzle was that for which the balance would give the highest
reading.

The air volume rate of flow, Q, was calculated from the following

equation:

qQ = J/pVj (1]

For several ratios of P/Pu (assuming P = 14,7 psi and the speed of
sound a, = 1117 feet per second), corresponding ratios of Vj/at were
found in the tables presented in Reference 2 (for Cp/cv = 1.4). For
practical purposes, the value of p in Equation [1] was assumed constant
at 0,002378 slug per cubic foot.

The calibration of the flowmeter, therefore, was in terms of rate

of flow for air-supply pressure.

TEST PROCEDURE
Data were obtained at selected ratios of inlet area to model base
area, various flap angle settings, ratios of he/k', and pressure. The

tests were conducted in two phases.
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In the first phase (with no air flowing through the flowmeter),
the free water surface was barely in contact with the trailing edge of
the flap; i.e., he was equal to 0. The values for the flap angle 6
were varied from -75° to 75° in 15° increments., Then values of Ah were
recorded for corresponding values of Pu. The static pressure orifices
were utilized to determine whether there was a static pressure gradient
along the length of the model and to check the accuracy in the measure-
ment of depth of depression of the water., In a sense, one might look at
the model and flow stand as a giant U-tube manometer. Because of the
geometry of the model and by definition of he, it was necessary to vary
the amount of water in the tank in order to maintain the height he
constant at O, The same procedure was repeated for each of the inlet
nozzle blocks,

For the second phase, he was set at some value other than zero.
This was done either by adding or evacuating water from the test stand.
The values of k' changed automatically with a change in 8, as shown in

the notation. The same procedure was repeated for each inlet condition.
RESULTS

The effect of the ratios si/se, h/k', Ah/h, he/k, and 6 upon the
discharge coefficient Dc is presented in Figures 4 through 14, The
physical meaning of these quantities can be better understood after a
careful study of the test setup and the sketch in the notation.

The discharge coefficient Dc was computed from

c 5, J-_z_z_g_— [2]
P

where AP was obtained from the pressure head, Ah, and p' is the density
of the fluid (water, in this case).
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DISCUSSION

Because of the small size of the test stand and the crude nature
of the equipment which was used to obtain the results, the data should
be used for preliminary evaluation only. Further testing should be
done on a larger scale model, in order to substantiate the results
presented herein., For some conditions during the tests it was impossible
to obtain data points at the higher values of mass flow, because of an
undamped wave~producing oscillation. In some instances (high Ah), the
re~enforcement of the oscillation was sufficient to practically evacuate
the water from the tank.

A careful study of the data will show that for constant values of
k' (with 6 constant), if h increases (because of an increase in Ah), the
discharge coefficient is decreased. That is, as the planform loading
increases, the discharge coefficient decreases. This effect depends on
the nature of the flow at the flap trailing edge. To obtain true values
of the discharge coefficients for plenun GEM with a flap or skirt, the

exhaust area should be computed from
S =Cr [3]

as shown in Figure 15.

For the test results presented in this report, h was used instead
of r, since it was impossible to determine the value of r with sufficient
accuracy on a model of such small scale. The value of h was computed
from h = he + %P. This was done to simplify testing, since the average
position of the flap trailing edge was approximately at the center of the
test stand., A slight error die to a small variation in total planform
area S ogccurred for high negative or positive values of 5. Also, blocking
of the escape area occurs at high values of planform loading (high value
of Ah), because of spillage from the wave generated by the air as it
leaves the tralling edge of the flap. For this same configuration, spray
is generated by the escaping air travelling in a path tangential to the
liquid surface. The gmount of spray decreases directly with decrease
in Ah, and the nature of the spray was found to vary with 6. This can

be readily understood from the sketches in Figure 15. The escaping air
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at the trailing edge of the flap is forced to travel through a curved
path. The dynamic pressure of the escaping air creates a drop in static
pressure (below atmospheric) on the flap surface. Equilibrium is main-
tained by the wave rise spilling slightly over and toward the flap.

As the water spills over, the escaping air pushes against it, generating
spray. Tnis situation will be encountered in any GEM when hovering

over a liquid surface. For a GEM cruising gbove "hump speed,' the spray
will not be generated as in hovering, since Ah = 0, The amount of lift
created in hovering will be equal to the weight of the volume of liquid
displaced.

. CONCLUSIONS

The results indicate that the discharge coefficient is a function
of intake area, flap angle, and planform loading.

The values for discharge coefficlents were found to vary considerably
with planform loading. Discharge coefficient values should be considered
only approximate, because of model size. These results do show a quali~
tative behavior of a plenum chamber GEM in the over-liquid hovering
condition. Further tests, with a larger model, should be carried out to
determine the exact contributions of each of the above-mentioned param-

eters to the discharge coefficients.

Aerodynamics Laboratory
David Taylor Model Basin
Washington, D, C.

May 1963
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Figure 2 ~ Photograph of a Typical Intake Nozzle Block

PSD-304,977 September 11, 1961
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